首页 > 实验室 > 大陆构造与动力学国家重点实验室 > 大陆动力学实验室
实验室负责人:李海兵 研究员
联系电话:010-68990581
实验室概况
大陆动力学实验室先后引入电子探针、SEM-EDS-EBSD、集成矿物分析仪(TIMA 3-X LMH)、原子级冷场发射透射电子显微镜(TEM)、离心机、D8 discover w/GADDs XRD、高分辨X射线荧光光谱仪、裂变径迹分析系统等。实验室以大陆动力学理论为指导,提供一个高水平的成分与组构分析和矿物微区分析研究平台,以解决中国大陆若干重大关键科学问题为目标,进行多学科前沿基础研究,并结合和引领地质基础调查,为国家资源/能源/防灾的需求服务。因此,实验室的定位为基础研究为主,与公益性应用相结合。
仪器介绍:
1、电子探针实验室
日本电子JXA-8100型电子探针,JEOL独创开发的电子光学系统;种类丰富的分光谱仪和分光晶体确保了高灵敏度和高分辨率;样品台速度快重复性高;WD/ED组合系统提高效率;稳定/清洁的真空;简单的EPMA分析操作。
电子探针实验室
2、EBSD实验室
牛津电子背散射衍射仪(Oxford Nordlys F+ EBSD)和能谱(Oxford X-Max 50 EDS)搭载于FEI的热场发射高分辨扫描电子显微镜(FEI Quanta 450 SEM)之上。
EBSD实验室
3、原子级冷场发射透射电子显微镜(TEM)实验室
实验室配备JEOL生产的原子级冷场发射透射电子显微镜JEM-ARM200F(NEOARM)。该设备由冷场发射电子枪、聚光镜球差校正器、双超级能谱仪、数字化成像系统、高压系统和真空系统组成等组成,用于材料的原子级高分辨形貌观察和原子级的结构成分分析。
仪器最高加速电压为200KV,可提供在最高加速电压200kV下及80KV球差数据。点分辨率为0.23nm(200kV),线分辨率为0.1nm(200kV),信息分辨率(杨氏分辨率)为0.11nm(200KV),STEM图像分辨率为0.078nm(200kV)。TEM模式下放大倍数为50X-2,000,000X(荧光屏为参考面),STEM模式下放大倍数为200X-150,000,000X。
原子级冷场发射透射电子显微镜(TEM)
于2019年12月采购,2022年4月完成能谱安装,即全部设备安装完成,同年6月进行首轮培训,8月进行Gatan相关操作培训,目前处于试运行阶段。
4、集成矿物分析仪(TIMA 3-X LMH)实验室
集成矿物分析仪是基于肖特基场发射扫描电子显微镜配置二次电子探测器、透镜内二次电子探测器、背散射电子探测器、阴极荧光探测器和高效X-射线能谱综合集成的一台可以高分辨识别并成像的矿物分析和结构分析系统。
集成矿物分析仪(TIMA 3-X LMH)
5、裂变径迹实验室
裂变径迹分析系统由澳大利亚Auto Scan 公司生产的Fission Track Analysis System Trakscan Plus系统,由两台高品质光学显微镜、高精度二维显微物台、控制器和操作杆、高分辨率彩色CCD、高性能图形工作站、两台大屏幕显示器和专用软件(Track Works和Fast Tracks)等组成,具备裂变径迹图像拍照和径迹统计等功能。
集成的显微镜控制系统和显微镜数码图像自动捕捉工具, 裂变径迹自动计数结合人工手动修正系统。
6、粘土矿物分离分级实验室
包括离心机分离实验室和D8 discover w/GADDs XRD实验室,离心机达到万转以上,是目前国内少量开展多粒级粘土矿物分级的实验室,此外XRD设备使用二维面探测器,可同时开展微区和靶片全区的分析。
黏土矿物XRD实验室
7、高分辨X射线荧光光谱仪
仪器型号是布鲁克M4 Tornado高分辨X射线荧光光谱仪,设备具有高分辨率和广泛的样品接受性,可在微米尺度上对各种不均匀、不规则样品尤其是大尺寸样品进行原位的、高灵敏度和非破坏性的元素分析。
高分辨X射线荧光光谱仪
工作内容:
本实验室主要进行如下方面的分析测试工作:
1、电子探针实验室
(1)通过获取背散射电子图像(Backscattered electron image ,BSE)和二次电子图像(Secondary electron image, SEI),可以直观地观察样品的表面形貌特征,矿物相的显微结构特征及不同矿物相之间的显微结构关系;
(2)对常规造岩矿物进行单点的化学成分定性分析和定量分析;
(3)对造岩矿物中主要元素进行面扫描分析(X-ray Mapping),展示其特定区域主、微量元素的详细分布特征;
(4)对挥发组分(如F、Cl等)进行定量分析。
2、EBSD实验室
(1)矿物显微结构、组构分析,包括晶体取向、优选方位、颗粒大小统计、滑移系鉴定等;
(2)大面积拼接构图和精准相分析功能,可进行EDS和EBSD的同步采集,同时获取晶体结构和矿物成分信息;
(3)各类样品的扫描电镜高分辨率成像,除常规样品的高真空成像,还可进行不喷镀样品或含水样品等的低真空或环境扫描模式成像。
3、原子级冷场发射透射电子显微镜(TEM)实验室
能从微纳米尺度对天然矿物、地外陨石、生物合成矿物等样品的形貌、晶体结构(如晶格生长和缺陷)和主量元素等进行高精度分析,获取矿物或岩石的形成、变质/变形及其携带的构造信息。目前服务主要包括形貌观察、点能谱成分分析、高分辨图像及电子衍射分析。
4、集成矿物分析仪(TIMA 3-X LMH)实验室
高清晰的电子图像,小到微米-纳米级别大至数十毫米范围的结构成分信息,数据库的计算甄别鉴定,获取诸如微小矿物包裹体、矿物内部微细成分变化如环带结构、大面积样品的元素分布、多种不同矿物的分布、不同粒度级别分布,不同种属不同粒径级别的矿物的百分含量的统计等测试信息。
5、裂变径迹实验室
造山带、活动断裂带、沉积盆地等低温热年学研究,磷灰石裂变径迹定年研究。
6、粘土矿物分离分级实验室
用于断层泥、沉积岩等粘土矿物的分离和不同粒径的分级工作,同时,通过XRD图谱分析对不同粒级中粘土矿物的相对组成进行半定量分析。
7、高分辨X射线荧光光谱仪
用于观察地学中微米尺度的元素分布迁移特征,解决各类地质样品原位微米级元素无损成像分析难题,揭示元素赋存状态和迁移规律,认识岩石-流体相互作用机制。
研究成果:
实验室发表文章:
(1)Wang H, Li HB, Di Toro G, Kuo L-W, Spagnuolo E, Aretusini S, Si JL, Song S-R., Melting of fault gouge at shallow depth during the 2008 2 MW 7.9 Wenchuan earthquake, China, Geology, 2023, Doi:10.1130/G50810.1.
(2)Pan, J., Li, H., Chevalier, M. L., Tapponnier, P., Bai, M., Li, C.,et al. Co-seismic rupture of the 2021, Mw7. 4 Maduo earthquake (northern Tibet): Short-cutting of the Kunlun fault big bend. Earth and Planetary Science Letters 2022, 594, 117703. https://doi.org/10.1016/j.epsl.2022.117703.
(3)Dongliang Liu , Eric C. Ferré, Haibing Li, Yu-Min Chou, Huan Wang, Chorng-Shern Horng, Zhiming Sun, Jiawei Pan, Marie-Luce Chevalier, Yong Zheng, Chenglong Ge, Fucai Liu. Magnetic evidence of seismic fluid processes along the East Yibug Chaka Fault, Tibet. Tectonophysics, 2022, 838, 229500, doi: 10.1016/j.tecto.2022.229500.
(4)Xin Dong, Zeming Zhang, Zuolin Tian, Yaoling Niu, Liangliang Zhang. Protoliths and metamorphism of the central Himalayan eclogites: Zircon/titanite U–Pb geochronology, Hf isotope and geochemistry. Gondwana Research, 2022, 104: 39-53.
(5)Xin Dong, Zeming Zhang, Zuolin Tian. Precambrian metamorphic basement of the southern Lhasa terrane, Tibet. Precambrian Research, 2022, 368: 106478.
(6)HE Bizhu, ZHENG Menglin, YUN XiaoRui, CAI Zhihui, JIAO Cunli, CHEN Xijie, ZHENG Yon, MA Xuxuan, LIU Ruohan, CHEN Huiming, ZHANG Shengsheng, Lei Min, FU Guoqiang, LI Zhenyu. Structural architecture and energy resource potential of Gonghe Basin, NE Qinghai -Tibet Plateau. Earth Science Frontier, 2023,30(1):81-105.
(7)Lu, H, Malusa, M. G., Zhang, Z., Guo, L., Shi, X., Ye, J. Syntectonic sediment recycling controls eolian deposition in eastern Asia since ∼8 Ma. Geophysical Research Letters, 49, e2021GL096789.
(8)Lu, H, Sang, S., Wang, P., Zhang, Z., Pan, J., Li, H. Initial uplift of the Qilian Shan, northern Tibet since ca. 25 Ma: Implications for regional tectonics and origin of eolian deposition in Asia . GSA Bulletin, https://doi.org/10.1130/B36 242.1.
(9)Zhongbao Zhao,Haijian Lu,Shiguang Wang,Haibing Li,Chao Li,Dongliang Liu,Jiawei Pan,Yong Zheng,Minkun Bai. The Cenozoic Multiple-Stage Uplift of the Qiangtang Terrane, Tibetan Plateau. Frontiers in Earth Science, 2022,10,
(10)Ma, X.X., Attia, S., Cawood, T., Cao, W.R., Xu, Z.Q., Li, H.B. Arc tempos of the Gangdese batholith, southern Tibet . Journal of Geodynamics, 149, 101897.
(11)Chao Li,Zhongbao Zhao,Haijian Lu,Haibing Li. Late Mesozoic-Cenozoic multistage exhumation of the central Bangong-Nujiang Suture, Central Tibet. Tectonophysics, 2022, 2010, 827, 229268.
(12)Su, D.-C., Sun, A.-P., Li, Z.-L., Chen, S.-Y., Wu, Z.-J. Origin of soft-sediment deformation structures in Nihewan Basin. Journal of Palaeogeography, 2022.11(3)332-359.
(13)Zuolin Tian, Zeming Zhang, Philip M. Piccoli, Xin Dong. Early Jurassic accretion of retrograde eclogites and granulites in the Amdo complex, Bangong-Nujiang suture zone, central Tibet. Gondwana Research, 2022, 104, 70-91.
(14)Li Huaqi,Li Tianfu, He Zhenyu and Ji Fengbao. Early Cretaceous hydrous mafic magmatism in the eastern Lhasa terrane, Tibet: Petrogenesis and constraints on the early history of the eastern Jiali (Parlung) fault. Lithos, 2022, 418–419 (2022) 106686
(15)Zhang Z M, Ding H X, Palin R M, Dong X, Tian Z L, Kang DY, Jiang YY, Qin S K, Li W T. On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of the Himalayan orogen. Gondwana Research, 2022, 104, 4-22.
(16)Qing SK, Zhang ZM, Palin RM, Ding HX, Dong X, Tian ZL. Tectonic burial of sedimentary rocks drives the building of juvenile crust of magmatic arc. GSA Bulletin, 2022, https://doi.org/10.1130/B36271.1
(17)Zhang Chaofan, Liu Fei*, Lv Qing, Wang Yu, Yang Jingsui. Morphological Features and Spectral Comparisons of Diamonds from Three Kimberlite Belts in Mengyin, China.Minerals, 2022, 12(10), 1185
(18)Liu Fei, Yang Jingsui, Feng Guangying, Niu Xiaolu, Li Guanlong, Zhang Chaofan. Spatial and temporal variations of granitoids in the Altay orogen and their implications for tectonic setting and crustal growth: perspectives from Chinese Altay. Acta Petrologica Sinica, 2022, 已接收
(19)Guisheng Zhou, Jianxin Zhang, C.G. Mattinson, Zenglong Lu, Xiaohong Mao, Xia Teng. Exhumation of deeply subducted continental crust along contrasting pathways: Examples from the North Qaidam ultrahigh pressure metamorphic terrane, North Tibet. Gondwana Research,2022, 103(221-242.
(20)Xia Teng, Jianxin Zhang, Thomas Müller, Xiaohong Mao, Zenglong Lu, Guisheng Zhou. Post-collisional extension of the South Altun subduction-collision belt, northern Tibetan Plateau: Insight from phase equilibria modeling and zircon geochronology of pelitic migmatites. Journal of Asian Earth Sciences, 2022, 225, 105069.
(21)Xia Teng, Jianxin Zhang, Xiaohong Mao, Zenglong Lu, Guisheng Zhou, Yawei Wu, Qi Guo. Qaidam block situated in the interior of Rodinia and Gondwana: New magmatic and metamorphic constraints. Precambrian Research, 2022, 381, 106866.
(22)Chevalier, M.L., Wang, S., Replumaz, A., Li, H. Marine oxygen Isotope Stage (MIS)-6 glacial advances on the Tibetan Plateau more extensive than during MIS-2 due to more abundant precipitation. Acta Geologica Sinica, 2022, 96(5), doi:10.1111/1755-6724.14687.
(23)Chevalier, M.L., Tapponnier, P., Trinh, P.T., Briais, A., Li, H., Xu, R. Large-scale inversion of Plio-Quaternary slip along the boundary faults between the South China, Sunda, and Shan blocks. Acta Geologica Sinica, 2022, 96(8), 2833-2852.
(24)Bai, M., Chevalier*, M.L., Li, H., Pan, J., Wu, Q., Wang, S., Liu, F., Jiao, L., Zhang, J., Zhang, L., Gong, Z. Late Quaternary slip rate and earthquake hazard along the Qianning segment, Xianshuihe fault. Acta Geologica Sinica, 2022, 96 (7), 2312-2332.
(25)Chevalier, M.L., Replumaz, A., Wang, S., Pan, J., Bai, M., Li, K., Li, H. Limit of monsoonal precipitation in southern Tibet during the Last Glacial Maximum from relative moraine extents. Geomorphology, 2022, 397, 108012, doi:10.1016/j.geomorph.2021.108012.
(26)Pingchuan Zhang, Changqing Yu, Xiangzhi Zeng, Shunjia Tan, Chao Lu. Ore-controlling structures of sandstone-hosted uranium deposit in the southwestern Ordos Basin: Revealed from seismic and gravity data. Ore Geology Reviews, 2022, 140,104,590.
(27)Yang, T., Chen, J., Hou, Z., Xin, D., Aghazadeh, M. Multiple volcanic episodes of the Kermanshah forearc basin, SW Iran: a record of the deactivation and re-initiation of Neotethyan subduction involving a mid-oceanic ridge . Journal of the Geological Society, 2022-028.
(28)Hui Qian; ChangqingYu; James Mechie; Xiangzhi Zeng. Dense seismological array and profile across the Longmenshan and the deep extension of the Pengguan complex. Tectonophysics, 2022, 823(229193).
(29)Jiang YY, Zhang ZM, Palin RM, Ding HX, Mo XX. Early Cenozoic partial melting of meta-sedimentary rocks of the eastern Gangdese arc, southern Tibet, and its contribution to syn-collisional magmatism. GSA Bulletin, 2022, 134, 179-200.
(30)Ding HX, Zhang ZM, Palin RM, Kohn MJ, Niu ZX, Chen YF, Qin SK, Jing YY, Li WT. Late Cretaceous Metamorphism and Anatexis of the Gangdese Magmatic Arc, South Tibet: Implications for Thickening and Differentiation of Juvenile Crust. Journal of Petrology, 2022, 63, 1-26.
(31)Chen YF, Zhang ZM, Chen XH, Palin RM, Tian ZL, Shao ZG, Qin SK, Yuan YL. Neoproterozoic and Early Paleozoic magmatism in the eastern Lhasa terrane: Implications for Andean-type orogeny along the northern background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">
(32)Wang Hui, Yu Xiaoyan*, Liu Fei*, Alam M and Wu Gaichao. Color genesis and Chemical Compositions Characteristics of Color-change Sapphire from Fuping, China. Crystals, 2022, 12: 463.
(33)Wu Gaichao, Yu Xiaoyan*, Liu Fei*, Li Haibo, Long Zhengyu and Wang Hui. Color genesis of Brown Diamond from the Mengyin Kimberlite, China. Crystals, 2022, 12: 449.
(34)Liang, M. J., Yang, T. N., Xue, C. D., Xin, D., Yan, Z., Liao, C., Han, X., Xie, Z. P., Xiang, K . Complete deformation history of the transition zone between oblique and orthogonal collision belts of the SE Tibetan Plateau: Crustal shortening and rotation caused by the indentation of India into Eurasia. Journal of Structural Geology, 2022, 156, 104545.
(35)Liang, M. J., Yang, T. N., Yan, Z., Xue, C. D., Xin, D., Qi, S. F., Dong, M. M., Wang, W., Shi, P. L., Xiang, K., Han, X., Bao, J. K. Early late triassic retro-foreland basin in response to flat subduction of the Paleo-Tethyan oceanic plate, SE tibet. Frontiers in Earth Science, 2022, 10957337.00
(36)Rui Huichao, Yang Jingsui*, Zheng Jianping, Llanes Castro AI, Liu Fei*, Wu Yong, Wu Wweiwei, Mariño YV and Masoud AE. Early Cretaceous subduction initiation of the proto-Caribbean plate: geochronological and geochemical evidence from gabbros of the Moa-Baracoa ophiolitic massif, Eastern Cuba. Lithos, 2022,418-419: 106674
(37)Wang Guangya, Yu Xiaoyan*, Liu Fei*. Genesis of Color Zonation and Chemical Composition of Penglai Sapphire in Hainan Province, China. Minerals, 2022, 12: 832
(38)Zhang ZM, Ding HX, Dong X, Tian ZL et al. The Mesozoic magmatic, metamorphic, and tectonic evolution of the eastern Gangdese magmatic arc, southern Tibet. GSA Bulletin, 2022, https://doi.org/10.1130/B36134.1
(39)Zheng Yong, Li Haibing, Li Junjie, Zhang Guohe, Si Jialiang. A Comparison Study of Synkinematic Illite Isolation, Quantitative X-ray Powder Diffraction, and K-Ar dating for Direct Fault Gouge Analyses. Acta Geologica Sinica, 2022;doi: 10.1111/1755-6724.15001
(40)Shi Cheng-Long, Ding, Xiao-Zhong, Liu Yan-Xue, Zhou Xiao-Dong. Detrital zircon U–Pb dating and Hf isotope study of late Palaeozoic sedimentary rocks in central–eastern Jilin Province, NE China: Constraints for tectonic evolution of the eastern segment of the Paleo-Asian Ocean. Geological Journal, 2022; 1– 21. https://doi.org/10.1002/gj.3525
(41)刘飞,杨经绥,冯光英,牛晓露,李观龙,张超凡. 古太平洋板片晚二叠–早三叠世俯冲后撤:来自海南岛弧岩浆作用的制约. 岩石学报, 2022, 已接收.
(42)董猛猛, 杨天南, 信迪, 梁明娟. 印度-欧亚大陆侧向碰撞带的地壳组成:始-渐新世岩浆岩继承锆石U/Pb年龄及Hf同位素空间变化的启示. 岩石学报, 2022, 38(11): 0000-0000, doi: 10.18654/1000-0569/2022.11.xx
(43)王宇, 薛传东, 杨天南*, 梁明娟, 刘靖坤. 青藏高原东南缘金顶铅锌矿集区渐新世-中新世沉积特征:大陆斜向碰撞带周缘前陆盆地沉积. 岩石学报, 2022, 38(11): 0000-0000, doi: 10.18654/1000-0569/2022.11.xx
(44)滕霞, 张建新, 毛小红, 路增龙, 周桂生, 武亚威, 郭祺. 柴达木地块寒武纪变质作用—来自相平衡模拟和独居石U-Pb年代学的约束. 岩石学报,doi: 10.18654/1000-0569/2022.11.01
(45)郭祺,毛小红,张建新, 路增龙,周桂生,滕霞,武亚威.西秦岭北缘秦岭杂岩麻粒岩相变质作用:来自相平衡模拟和独居石原位U-Pb定年的制约. 岩石学报, 2022, doi: 10.18654/1000-0569/2022.11.xx
(46)信迪,杨天南,梁明娟,廖程,董猛猛,王维,刘靖坤. 滇西白洋厂砂岩型铜矿区逆冲-掀斜走滑断层组合控矿构造解析. 岩石学报, 2022, 38(11): 0000-0000, doi: 10.18654/1000-0569/2022.11.xx
(47)李振,贠晓瑞,何碧竹*,张新远,蔡志慧,郑孟林,刘若涵,陈海峰. 构造作用对花岗岩宏观裂缝系统的控制—以共和东北部党家寺岩体为例. 岩石学报, 2022, doi: 10.18654/1000-0569/2022.11.19
(48)李春锐,李海兵,司家亮,王焕,吴琼,张进. 2022 . 青藏高原东缘龙门山断裂带孕震区域流体行. 岩石学报. (第11期待发表)
(49)郑勇,李海兵,王焕,司家亮,张蕾,李成龙,张佳佳. 2022. 龙门山地震断裂带的热年代结果及其对断裂活动的指示. 岩石学报. (第11期待发表)
(50)刘飞, 杨经绥, 冯光英, 牛晓露, 李观龙, 张超凡. 2022. 古太平洋板片晚二叠-早三叠世俯冲后撤:来自海南岛弧岩浆作用的制约. 岩石学报. (第11期待发表)
(51)李观龙, 刘飞, 杨经绥, 薄容众, 芮会超, 卢雨潇, 章奇志. 2022. 蛇绿岩中识别出不同类型的方辉橄榄岩及其岩相分带-来自丁青蛇绿岩专项地质调查的证据. 岩石学报. (第11期待发表)
(52)潘家伟, 李海兵, Marie-Luce CHEVALIER, 刘栋梁, 李超, 刘富财, 吴琼, 卢海建, 焦利青. 2022年青海门源Ms6.9地震地表破裂带及发震构造研究. 地质学报, 2022, 96(1): 215-231.
(53)刘富财, 潘家伟*, 李海兵, 孙知明, 刘栋梁, 卢海建, 郑勇, 王世广, 白明坤, Marie-Luce Chevalier, 张蕾, 曹勇. 青藏高原中部日干配错断裂第四纪活动特征及2020年7月23日西藏尼玛Mw6.4地震发震构造分析. 地球学报, 2022, 43(2): 173-188.
(54)刘栋梁, 李海兵, 王平, 潘家伟, 郑勇, 朱训璋. 南海北部盆地新生代物源对周边主要河流演化的响应. 地质学报, 2022, 96(8), 2761-2774.
(55)何碧竹,郑孟林,贠晓瑞,蔡志慧,焦存礼,陈希节,郑勇,陈辉明,马绪宣,刘若涵,张盛生,雷敏,付国强,李振宇. 青海共和盆地结构构造与能源资源潜力. 地学前缘, 2023,30(1):81-105.
实验室获得专利:
(1)一种钻井下探头保护罩;实用新型专利;发明人:李海兵,司家亮,张蕾,李春锐;专利号:ZL 2022 2 1445192.3;专利权人:中国地质科学院地质研究所。该专利已有效用于国家野外观测站深井监测中。