发现并命名7种新矿物:
经绥矿 TiB2
JINGSUIITE,IMA No.2018-117b,中国地质博物馆藏馆号:M13816
巴登珠矿 TiP
BADENGZHUITE,IMA No. 2019-076,中国地质博物馆藏馆号:M13817
志琴矿 TiSi2
ZHIQINITE,IMA No.2019-077,中国地质博物馆藏馆号:M13817
文吉矿 Ti10SixPy x > y, 6 ≤ (x + y) ≤ 7
WENJIITE,IMA No.2019-107c,中国地质博物馆藏馆号:M16104
康金拉矿 Ti11Si10
KANGJINLAITE,IMA No.2019-112b,中国地质博物馆藏馆号:M16104
沃德贡杰石 KCa3(Al7Si9)O32
WODEGONGJIEITE,IMA No.2020-036b, 中国地质博物馆藏馆号:M16104
罗宾逊矿 Ti8Fe4O2
PAULROBINSONITE,IMA No.2022-099a, 中国地质博物馆藏馆号:M11843
代表性论文
1.Xiong, F.H., Zoheir, B., Robinson, P.T., Wirth, R., Xu, X.Z., Qiu, T., Sun, Y. 2022. Microchemistry and magnesium isotope composition of the Purang ophiolitic chromitites (SW Tibet): New genetic inferences. American Mineralogist, doi.org/10.2138/am-2022-8392.
2.Xiong, F.H., Xu, X.Z., Zoheir, B., Lenaz, D. Yang, J.S. 2022.Genesis and evolution of the K?ycegiz ophiolite (SW Turkey): Mineralogical and geochemical characteristics of associated podiform chromitite. Ore Geology Reviews, 145, 104912.
3.Xiong, F.H., Xu, X.Z., Mugnaioli, E., Gemmi, M., Wirth, R., Yang, J.S., Grew, E.S., 2022. Wenjiite, Ti10(Si,P,?)7, and kangjinlaite, Ti11Si10, new minerals in the ternary Ti-P-Si system from the Luobusa ophiolite, Tibet, China. American Mineralogist, doi.org/10.2138/am-2022-8226.
4.Xiong, F.H., Xu, X.Z., Mugnaioli, E., Gemmi, M., Wirth, R., Grew, E.S., Robinson, P.T., 2022. Jingsuiite, TiB2, a new mineral from the Cr-11 podiform chromitite orebody, Luobusa ophiolite, Tibet, China: Implications for recycling of boron. American Mineralogist, 107: 43-53.
5.Xiong, F.H., Zoheir, B., Wirth, R., Milushi, I., Qiu, T., Yang, J.S., 2021. Mineralogical and isotope peculiarities of high-Cr chromitites: Implications for a mantle convection genesis of the Bulqiza ophiolite. Lithos, 398-399, 106305
6.Xiong, F.H., Xu, X.Z., Mugnaioli, E., Gemmi, M., Wirth, R., Grew, E.S., Robinson, P.T., Yang, J.S., 2020. Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: is this evidence for super-reduced mantle-derived fluids?European Journal of Mineralogy, 32, 557-574
7.Xiong, F.H., Zoheir, B., Robinson, P.T., Yang, J.S., Xu, X.Z., Meng, F.C., 2020. Genesis of the Ray-Iz chromitite, Polar Urals: Inferences to mantle conditions and recycling processes. Lithos, 396-397, 105699
8.Xiong, F.H., Yang, J.S., Schertl, H.P., Liu, Z., Xu, X.Z., 2020. Multi-stage origin of dunite in the Purang ophiolite, southern Tibet, documented by composition, exsolution and Li isotope characteristics of constituent minerals. European Journal of Mineralogy, 32, 187-207
9.Xiong, F.H., Dilek, Y., Xu, X.Z., Yang, J.S., 2020. Opx–Cpx exsolution textures in lherzolites of the Cretaceous Purang Ophiolite(S. Tibet, China), and the deep mantle origin of Neotethyan abyssal peridotites. International Geology Review, 62, 665-682.
10.Xiong, F.H., Meng, Y.K., Yang, J.S., Liu, Z., Xu, X.Z., Eslami, A., Zhang, R., 2020. Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite: Implications for evolution of the western Yarlung-Tsangpo suture zone, southwestern Tibet. Geoscience Frontiers, 11, 277-292.
11.Xiong, F.H., Liu, Z., Kapsiotis, A., Yang, J.S., Lenaz, D., Robinson, P.T., 2019. Petrogenesis of lherzolites from the Purang ophiolite, Yarlung-Zangbo Suture Zone, Tibet: origin and significance of ultra-high pressure and other “unusual” minerals in the Neo-Tethyan lithospheric mantle. International Geology Review,17, 2184-2210.
12.Xiong, F.H., Yang, J.S., Dilek, Y., Xu, X.Z., Zhang, Z.M., 2018. Origin and Significance of Diamonds and Other Exotic Minerals in the Dingqing Ophiolite Peridotites, Eastern Bangong-Nujiang Suture Zone, Tibet. Lithosphere, 10: 142-155
13.Xiong, F.H., Yang, J.S., Xu, X.Z., Kapsiotis, A., Hao, X.L., Liu, Z., 2018. Compositional and isotopic heterogeneities in the Neo-Tethyan upper mantle recorded by coexisting Al-rich and Cr-rich chromitites in the Purang peridotite massif, SW Tibet (China). Journal of Asian Earth Sciences, 159, 109-129
14.Xiong, F.H., Yang, J.S., Dilek, Y., Wang, C.L., 2018. Petrology and geochemistry of the high-Cr podiform chromitites of the K?ycegiz ophiolite, southwest Turkey: Implications for the multi-stage evolution of the oceanic upper mantle. Mineralogy and Petrology, 112, 685-704
15.Xiong, F.H., Yang, J.S., Robinson, P.T., Gao, J., Chen, Y.H., Lai, S.M., 2017. Petrology and geochemistry of peridotites and podiform chromitite in the Xigaze ophiolite, Tibet: Implications for a suprasubduction zone origin. Journal of Asian Earth Sciences, 146: 56-75
16.Xiong, F.H., Yang, J.S., Dilek, Y., et al., 2017. Nanoscale Diopside and Spinel Exsolution in Olivine from Dunite of the Tethyan Ophiolites, Southwestern Turkey: Implications for the multi-stage process. Journal of Nanoscience and Nanotechnology, 17: 6587-6596
17.Xiong, F.H., Yang, J.S., Robinson, P.T., Dilek, Y., Milushi, I., Xu, X.Z., Zhou, W.D., Zhang, Z.M., Rong, H., 2017. Diamonds discovered from High-Cr podiform chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania. Acta Geologica Sinica, 91: 455-468
18.Xiong, F.H., Yang, J.S., Robinson, P.T., et al. 2017. High-Al and high-Cr podiform chromitites from the western Yarlung-Zangbo suture zone, Tibet: Implications from mineralogy and geochemistry of chromian spinel, and platinum-group elements. Ore Geology Review, 80: 1020-1041
19.Xiong, F.H., Yang, J.S., Robinson, P.T., et al., 2016. Diamonds and Other Exotic Minerals Recovered from Peridotites of the Dangqiong Ophiolite, Western Yarlung-Zangbo Suture Zone, Tibet. Acta Geologica Sinica, 90: 425-439
20.Xiong, F.H., Yang, J.S., Robinson, P.T., Dilek, Y., Milushi, I., Xu, X.Z., Chen, Y.H., Zhou, W.D., Zhang, Z.M., Lai, S.M., Tian, Y.Z., Huang, Z., 2015. Petrology and geochemistry of high Cr podiform chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania. Ore Geology Review, 70: 188-207
21.Xiong, F.H., Yang, J.S., Robinson, P. T., Xu, X.Z., Liu, Z., Li, Y., Li, J.Y., Chen, S.Y., 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27: 525-542