2016年04月08日 星期五

高级专业技术职务

熊发挥

熊发挥  男,研究员

研究方向:铬铁矿及地幔矿物学

Add:北京市西城区阜外百万庄大街26号地质研究所,100037

Tel: 010-68990674      E-mail:xiongfahui@126.com


个人经历: 

教育经历:

2010/6-2013/6,中国地质科学院地质研究所,专业:矿物学、岩石学、矿床学,博士

2007/9-2010/6,成都理工大学,地球科学学院地质系保送研究生,专业:矿物学、岩石学、矿床学,硕士

2003/9-2007/6,成都理工大学,地球科学学院地质系,专业:地质学,学士

科研与学术工作经历:

2022/3-至今,中国矿物岩石地球化学学会-新矿物及矿物命名专业委员会委员

2021/12 -至今,中国地质学会-纳米地质专业委员会委员

2018/12 -至今,中国地质学会岩石专业委员会委员

2018/10 -至今,山东科技大学客座教授

2020/10/20 -至今,中国地质科学院地质研究所,研究员

2017/1/1-2020/10/19,中国地质科学院地质研究所,副研究员

2013/7-2016/12,中国地质科学院地质研究所,助理研究员

承担项目: 

1.国家自然基金面上项目,阿尔巴尼亚布尔齐泽铬铁矿中不同类型矿物包裹体的氧逸度特征及指示意义,2022/1-2025/12,主持

2.科技部青藏高原第二次科学考察专项,子课题,豆荚状铬铁矿中包裹体的成因研究,2019/1-2022/12,主持

3.国家自然科学基金青年项目,西藏普兰蛇绿岩中不同类型铬铁矿的铂族矿物特征及成因,2016/1-2018/12,主持

4.中国地质调查项目,子项目,青藏高原铬铁矿综合调查与普兰岩体调查,2017/1-2018/12 ,主持

5.国家重点研究计划,青藏高原深部过程与碰撞造山成矿作用, 子课题, 大陆碰撞带深地幔过程与铬铁矿成因, 2016/1-2020/12,主持

6.中国地质调查项目,子项目,班公怒江缝合带东段丁青蛇绿岩带区域地质调查,2019/1-2021/12,副负责

7.重点实验室开放基金,雅鲁藏布江缝合带西段普兰铬铁矿中深部地幔矿物包裹体研究,2019/4-2021/4,主持

8.中国地质科学院地质研究所,所长基金,雅鲁藏布缝合带东段泽当蛇绿岩中铬铁矿的铂族矿物特征及成因,2015/4-2017/4,主持

9.中国地质调查项目,二级项目,青藏高原铬铁矿综合调查,2015/1-2018/12,副负责

10.国家自然基金面上项目,不同类型地幔橄榄岩中刚玉的FIB-TEM对比研究, 2017/1-2020/12,参加

11.国家自然科学基金青年项目,西藏康金拉矿区铬铁矿和地幔橄榄岩中异常矿物的FIB和TEM精细研究,2013/1-2015/12,参加

12.科技部行业专项,大陆科学钻探选址与钻探实验—西藏罗布莎铬铁矿区科学钻探选址预研究课题的研究,2009/1-2014/12,参加

获奖及荣誉: 

1.2022年入选国家级高层次青年人才计划

2.自然资源部青年科技人才称号

3.2019年入选中国地质调查局优秀地质人才计划

4.中国地质调查局-中国地质科学院 2019年度地质科技十大进展奖

5.第五届中国科协优秀科技论文奖

代表性论著: 

发现并命名7种新矿物:
经绥矿 TiB2
JINGSUIITE,IMA No.2018-117b,中国地质博物馆藏馆号:M13816
巴登珠矿 TiP
BADENGZHUITE,IMA No. 2019-076,中国地质博物馆藏馆号:M13817
志琴矿 TiSi2 
ZHIQINITE,IMA No.2019-077,中国地质博物馆藏馆号:M13817
文吉矿 Ti10SixPy  x > y, 6 ≤ (x + y) ≤ 7
WENJIITE,IMA No.2019-107c,中国地质博物馆藏馆号:M16104
康金拉矿 Ti11Si10
KANGJINLAITE,IMA No.2019-112b,中国地质博物馆藏馆号:M16104
沃德贡杰石 KCa3(Al7Si9)O32
WODEGONGJIEITE,IMA No.2020-036b, 中国地质博物馆藏馆号:M16104
罗宾逊矿 Ti8Fe4O2
PAULROBINSONITE,IMA No.2022-099a, 中国地质博物馆藏馆号:M11843
 
 
代表性论文
1.Xiong, F.H., Zoheir, B., Robinson, P.T., Wirth, R., Xu, X.Z., Qiu, T., Sun, Y. 2022. Microchemistry and magnesium isotope composition of the Purang ophiolitic chromitites (SW Tibet): New genetic inferences. American Mineralogist, doi.org/10.2138/am-2022-8392.
2.Xiong, F.H., Xu, X.Z., Zoheir, B., Lenaz, D. Yang, J.S. 2022.Genesis and evolution of the K?ycegiz ophiolite (SW Turkey): Mineralogical and geochemical characteristics of associated podiform chromitite. Ore Geology Reviews, 145, 104912.
3.Xiong, F.H., Xu, X.Z., Mugnaioli, E., Gemmi, M., Wirth, R., Yang, J.S., Grew, E.S., 2022. Wenjiite, Ti10(Si,P,?)7, and kangjinlaite, Ti11Si10, new minerals in the ternary Ti-P-Si system from the Luobusa ophiolite, Tibet, China. American Mineralogist, doi.org/10.2138/am-2022-8226.
4.Xiong, F.H., Xu, X.Z., Mugnaioli, E., Gemmi, M., Wirth, R., Grew, E.S., Robinson, P.T., 2022. Jingsuiite, TiB2, a new mineral from the Cr-11 podiform chromitite orebody, Luobusa ophiolite, Tibet, China: Implications for recycling of boron. American Mineralogist, 107: 43-53.
5.Xiong, F.H., Zoheir, B., Wirth, R., Milushi, I., Qiu, T., Yang, J.S., 2021. Mineralogical and isotope peculiarities of high-Cr chromitites: Implications for a mantle convection genesis of the Bulqiza ophiolite. Lithos, 398-399, 106305
6.Xiong, F.H., Xu, X.Z., Mugnaioli, E., Gemmi, M., Wirth, R., Grew, E.S., Robinson, P.T., Yang, J.S., 2020. Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: is this evidence for super-reduced mantle-derived fluids?European Journal of Mineralogy, 32, 557-574
7.Xiong, F.H., Zoheir, B., Robinson, P.T., Yang, J.S., Xu, X.Z., Meng, F.C., 2020. Genesis of the Ray-Iz chromitite, Polar Urals: Inferences to mantle conditions and recycling processes. Lithos, 396-397, 105699 
8.Xiong, F.H., Yang, J.S., Schertl, H.P., Liu, Z., Xu, X.Z., 2020. Multi-stage origin of dunite in the Purang ophiolite, southern Tibet, documented by composition, exsolution and Li isotope characteristics of constituent minerals. European Journal of Mineralogy, 32, 187-207 
9.Xiong, F.H., Dilek, Y., Xu, X.Z., Yang, J.S., 2020. Opx–Cpx exsolution textures in lherzolites of the Cretaceous Purang Ophiolite(S. Tibet, China), and the deep mantle origin of Neotethyan abyssal peridotites. International Geology Review, 62, 665-682.
10.Xiong, F.H., Meng, Y.K., Yang, J.S., Liu, Z., Xu, X.Z., Eslami, A., Zhang, R., 2020. Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite: Implications for evolution of the western Yarlung-Tsangpo suture zone, southwestern Tibet. Geoscience Frontiers, 11, 277-292. 
11.Xiong, F.H., Liu, Z., Kapsiotis, A., Yang, J.S., Lenaz, D., Robinson, P.T., 2019. Petrogenesis of lherzolites from the Purang ophiolite, Yarlung-Zangbo Suture Zone, Tibet: origin and significance of ultra-high pressure and other “unusual” minerals in the Neo-Tethyan lithospheric mantle. International Geology Review,17, 2184-2210. 
12.Xiong, F.H., Yang, J.S., Dilek, Y., Xu, X.Z., Zhang, Z.M., 2018. Origin and Significance of Diamonds and Other Exotic Minerals in the Dingqing Ophiolite Peridotites, Eastern Bangong-Nujiang Suture Zone, Tibet. Lithosphere, 10: 142-155 
13.Xiong, F.H., Yang, J.S., Xu, X.Z., Kapsiotis, A., Hao, X.L., Liu, Z., 2018. Compositional and isotopic heterogeneities in the Neo-Tethyan upper mantle recorded by coexisting Al-rich and Cr-rich chromitites in the Purang peridotite massif, SW Tibet (China). Journal of Asian Earth Sciences, 159, 109-129 
14.Xiong, F.H., Yang, J.S., Dilek, Y., Wang, C.L., 2018. Petrology and geochemistry of the high-Cr podiform chromitites of the K?ycegiz ophiolite, southwest Turkey: Implications for the multi-stage evolution of the oceanic upper mantle. Mineralogy and Petrology, 112, 685-704 
15.Xiong, F.H., Yang, J.S., Robinson, P.T., Gao, J., Chen, Y.H., Lai, S.M., 2017. Petrology and geochemistry of peridotites and podiform chromitite in the Xigaze ophiolite, Tibet: Implications for a suprasubduction zone origin. Journal of Asian Earth Sciences, 146: 56-75 
16.Xiong, F.H., Yang, J.S., Dilek, Y., et al., 2017. Nanoscale Diopside and Spinel Exsolution in Olivine from Dunite of the Tethyan Ophiolites, Southwestern Turkey: Implications for the multi-stage process. Journal of Nanoscience and Nanotechnology, 17: 6587-6596
17.Xiong, F.H., Yang, J.S., Robinson, P.T., Dilek, Y., Milushi, I., Xu, X.Z., Zhou, W.D., Zhang, Z.M., Rong, H., 2017. Diamonds discovered from High-Cr podiform chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania. Acta Geologica Sinica, 91: 455-468 
18.Xiong, F.H., Yang, J.S., Robinson, P.T., et al. 2017. High-Al and high-Cr podiform chromitites from the western Yarlung-Zangbo suture zone, Tibet: Implications from mineralogy and geochemistry of chromian spinel, and platinum-group elements. Ore Geology Review, 80: 1020-1041
19.Xiong, F.H., Yang, J.S., Robinson, P.T., et al., 2016. Diamonds and Other Exotic Minerals Recovered from Peridotites of the Dangqiong Ophiolite, Western Yarlung-Zangbo Suture Zone, Tibet. Acta Geologica Sinica, 90: 425-439 
20.Xiong, F.H., Yang, J.S., Robinson, P.T., Dilek, Y., Milushi, I., Xu, X.Z., Chen, Y.H., Zhou, W.D., Zhang, Z.M., Lai, S.M., Tian, Y.Z., Huang, Z., 2015. Petrology and geochemistry of high Cr podiform chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania. Ore Geology Review, 70: 188-207 
21.Xiong, F.H., Yang, J.S., Robinson, P. T., Xu, X.Z., Liu, Z., Li, Y., Li, J.Y., Chen, S.Y., 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27: 525-542  

社会兼职及学术机构任职: 

中国矿物岩石地球化学学会-新矿物及矿物命名专业委员会委员;

中国地质学会-纳米地质专业委员会委员;中国地质学会-岩石专业委员会委员;

山东科技大学客座教授;

China Geology 青年编委