2016年04月08日 星期五

科技人才

杨志明

杨志明     男,中国地质科学院地质研究所    副研究员

电话:010-6899 9653 (o);     E-mail: zm.yang@hotmail.com

 


1978年11月出生,安徽省萧县人,中共党员。2008年毕业于中国地质科学院,获理学博士学位;同时博士论文获中国地质科学院 “程裕淇优秀学位论文奖”,2010年晋升为副研究员。现为地质研究所能源与资源中心副主任、中国地质学会青年工作委员会常务副秘书长、澳大利亚詹姆斯库克大学客座高级研究员、国际经济地质学会(SEG)会员、《矿床地质》编委。长期从事斑岩Cu-Mo-Au矿床的研究。近年来,作为项目负责人主持了国土资源部行业科研专项、国家基础研究计划973项目专题、国家自然科学基金等诸多与斑岩Cu-Mo-Au矿床有关的项目。

一、学习和工作经历

2002.9–2005.3,北京科技大学,矿产普查与勘探专业,攻读硕士学位;

2005.9–2008.6,中国地质科学院,矿物学、岩石学、矿床学,攻读博士学位;

2008.7–2010.11,中国地质科学院地质研究所,从事矿床学研究,助理研究员;

2009.9–2010.2,澳大利亚塔斯马尼亚大学优秀矿床研究中心(CODES),访问学者;

2010.11至今,中国地质科学院地质研究所,从事矿床学研究,副研究员;

其中:2013.7–2014.6,澳大利亚詹姆斯库克大学矿床研究中心(EGRU),访问学者;

2013.9至今,澳大利亚詹姆斯库克大学客座高级研究员(Adjunct Senior Research Fellow)

二、在研项目

1. 后碰撞环境斑岩铜矿成矿金属及硫的来源:以西藏驱龙铜矿为例,国家自然基金委面上基金,项目负责人,总经费85万元,起止时间:2013–2016年;

2. 中国驱龙和伊朗诺春斑岩铜矿梳状石英层成因研究,国家自然基金委面上基金,项目负责人,总经费95万元,起止时间:2015–2018年;

3. 中特提斯地区重要矿床地质背景、成矿作用和找矿潜力研究,中国地质调查局,项目负责人,总经费260万元,起止时间:2016.01-2016.12;

4. 内蒙古金厂沟梁金矿床成矿规律及靶区预测,中国黄金集团,项目负责人,总经费60万元,起止时间:2015–2016年;

5. 西藏冈底斯斑岩Cu-Mo成矿系统发育机制,科技部973项目,专题负责人,总经费100万元,起止时间:2011–2015年;

三、主要成果及论文

近年来主要从事斑岩铜矿及金矿床研究,主要取得以下进展:(1)详细解剖了西藏驱龙及厅宫、青海纳日贡玛等碰撞造山环境斑岩Cu-Mo矿床,查明了这些矿床的地质特征、成因机制,同时提出含矿斑岩富水新机制,合作建立了碰撞造山环境斑岩铜矿成矿模型,完善了斑岩铜矿成矿理论;(2)通过对内蒙古毕力赫矿床近5年的研究,识别出一种新的金矿床类型——岩浆型金矿。相关研究成果得到国内外的广泛关注,如以第一作者发表在矿床地质上的两篇论文为 2007-2011年间地学前1%高被引频次的论文。

近5年发表论文(2011-2015年):

[1] Yang, Z.M., Chang, Z.S., Paquette, J., White, N.C., Hou, Z.Q., Ge, L.S. 2015. Magmatic Au mineralization at the Bilihe Au deposit, China: Economic Geology, v. 110 (7) (in press).

[2]  Yang, Z.M., Chang, Z.S., Hou, Z.Q., Meffre, S. 2015. Age, igneous petrogenesis, and tectonic setting of the Bilihe gold deposit, China, and implications for regional metallogeny: Gondwana Research, doi: 10.1016/j.gr.2015.04.003.

[3]        Yang, Z.M., Hou, Z.Q., Chang, Z.S., Li, Q.Y., Liu, Y.F., Qu, H.C., Sun, M.Y., Xu, B., 2015. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: Petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones: Lithos, doi: 10.1016/j.lithos.2015.04.002.

[4]        Yang, Z.M., Lu, Y.J., Hou, Z.Q., Chang, Z.S. 2015. High-Mg diorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens: Journal of Petrology, v. 56, p. 227-254. doi: 10.1093/petrology/egu076.

[5]        Hou, Z.Q., Yang, Z.M., Lu, Y.J., Kemp, T., Yang, Z.S., Tang, J.X., Qu, X.M., Duan, L.F., Zheng, Y.C. 2015. A genetic linkage between subduction- and continental collision-related porphyry Cu deposits in Tibet: Geology, v. 43, p. 247-250. doi:10.1130/G36362.1.

[6] Lu, Y.J, Loucks, R.R., Fiorentini, M.L., Yang, Z.M., Hou, Z.Q. 2015. Fluid flux melting generated post-collisional high-Sr/Y copper-ore–forming water-rich magmas in Tibet. Geology, v. 43, p. 583-586. doi: 10.1130/G36734.1.

[7]        Hou, Z.Q., Liu, Y., Tian, S.H., Yang, Z.M., Xie, Y.L., 2015. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments: Scientific Report, v. 5, 10231; doi: 10.1038/srep10231.

[8]        Hou, Z.Q., Duan, L.F., Lu, Y.J., Zheng, Y.C., Zhu, D.C., Yang, Z.M., Yang, Z.S., Wang, B.D., Pei, Y.R., Zhao, Z.D., and McCuaig, T.C.  2015. Lithospheric architectures of the Lhasa Terrane control on the mineral systems in Himalaya orogen. Economic Geology, v. 110, p. 1541-1575.  

[9] Hou, Z.Q., Li, Q.Y., Gao, Y.F., Lu, Y.J., Yang, Z.M., Shen, Z.C., Wang, R., Duan, L.F., Ma, G.X. 2014. Lower-crustal magmatic hornblendite in North China: Insight into the genesis of porphyry Cu deposits. Economic Geology, v. 110 (7) (in press).

[10] Yang, D., Hou, Z.Q., Zhao, Y., Hou, K.J., Yang, Z.M., Tian, S.H., Fu, Q., 2015. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system. Scientific Report (in press).

[11]  Chen, J.L., Xu, J.F., Wang, B.D., Yang, Z.M., Ren, J.B., Yu, H.X., Liu, H.F., Feng, Y.X. 2015. Differences in the geochemistry of subduction- and collision-related porphyry copper deposits and implications for metallogenesis: Ore Geology Reviews, doi: 10.1016/j.oregeorev.2015.01.011.

[12]  Yang, Z.M., Hou, Z.Q., Xu, J.F., Bian, X.F., Wang, G.R., Yang, Z.S., Tian, S.H., Liu, Y.C., Wang, Z.L., 2014, Geology and origin of the post-collisional Narigongma porphyry Cu-Mo deposit, southern Qinghai, Tibet: Gondwana Research, v. 26, p. 536-556.

[13] Wang, R., Richards, J.P., Hou, Z.Q., Yang, Z.M., Gou, Z.B., DuFrane, A. 2014. Increasing magmatic oxidation state from Paleocene to Miocene in the eastern Gangdese belt, Tibet: Implication for collision-related porphyry Cu-Mo±Au mineralization: Economic Geology, v. 109, p. 1943-1965.

[14] Wang, R., Richards, J.P., Hou, Z.Q., Yang, Z.M., 2014. Greater India slab breakoff as a trigger for Miocene porphyry Cu-Mo±Au deposit formation in the eastern Gangdese belt, Tibet: Mineralium Deposita, v. 49: 165-173. 

[15] Wang, R., Richards, J.P., Hou, Z.Q., Yang, Z.M., DuFrane, S.A., 2014. Increased magmatic water content — the key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese belt, Tibet: Economic Geology, v. 109, p. 1315-1340.

[16]       Lu, Y.J., Kerrich, R., Kemp, A., McCuaig, T.C., Hou, Z.Q., Hart, C.J., Yang, Z.M., Bagas, L., Cliff, J., Belousova, E.A., Jourdan, F., Evans, N.J., 2013. Intracontinental porphyry Cu mineral systems of Yunnan, western Yangtze Craton: Compositional characteristics, sources, and implications for continental collision metallogeny: Economic Geology, v. 108, p. 1541-1576.

[17] Hou, Z.Q., Pan, X.F., Li, Q.Y., Yang, Z.M., Song, Y.C. 2013. The giant Dexing porphyry Cu–Mo–Au deposit in east China: product of melting of juvenile lower crust in an intracontinental setting: Mineralium Deposita, v. 48: 1019-1045.

[18] Hou, Z.Q., Zheng, Y.C., Yang, Z.M., Rui, Z.Y., Zhao, Z.D., Jiang, S.H., Qu, X.M., Sun, Q.Z., 2013, Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet: Mineralium Deposita, v. 48, p. 173-192.

 [19] Chang, Z.S., and Yang, Z.M., 2012, Evaluation of inter-instrument variations among Short Wavelength Infra-Red (SWIR) devices: Economic Geology, v. 107, p. 1479-1488.

[20] Hou, Z.Q., Zhang, H.R., Pan, X.F., Yang, Z.M., 2011. Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain: Ore Geology Reviews, v. 39, p. 21-45.

[21] 杨志明, 谢玉玲 (主编). 2015. 中国大陆环境典型斑岩型矿床成矿规律和找矿模型:研究进展 (II) (专辑).岩石矿物学杂志, 34(4): 445-580.

[22] 杜等虎, 杨志明*, 刘云飞, 曲焕春, 李秋耘, 许博, 巴登珠. 2015. 西藏厅宫斑岩铜矿床地质、蚀变及矿化特征研究. 岩石矿物学杂志,34(4): 447-474. (*通讯作者)

[23] 孙茂妤, 曲焕春, 李秋耘, 周利敏, 杨志明*, 刘申态, 刘永刚. 2015. 西藏玉龙铜矿床成矿斑岩的厘定及地质意义. 岩石矿物学杂志,34(4): 493-504. (*通讯作者)

[24] 曲焕春, 周利敏, 杨志明*. 2015. 德兴朱砂红矿床含辉钼矿岩石样品Re-Os定年及地质意义. 岩石矿物学杂志,34(4): 517-525. (*通讯作者)

[25] 杨志明, 侯增谦, 杨竹森, 曲焕春, 李振清, 刘云飞. 2012. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例. 矿床地质, 31(4): 699-717.

[26] 侯增谦, 杨志明. 2012. 中国大陆环境典型斑岩型矿床成矿规律和找矿模型研究进展. 矿床地质, 31(4): 645-646.

[27] 杜等虎, 杨志明*, 李秋耘, 刘云飞, 格桑平措, 王海勇. 2012. 西藏厅宫矿区始新世斑岩的厘定及其地质意义. 矿床地质, 31(4): 745-757. (*通讯作者)

[28] 刘云飞, 杨志明, 谢玉玲, 周平, 杜等虎, 李应栩, 李秋耘, 曲焕春, 许博. 2012. 西藏弄如日金矿侵入岩锆石SHRIMP U-Pb年龄及地球化学特征. 矿床地质, 31(4): 727-744.

[29] 杨志明, 侯增谦, 江迎飞, 张洪瑞, 宋玉财. 2011. 西藏驱龙矿床早侏罗世斑岩的Sr-Nd-Pb及锆石Hf同位素的区域对比及意义. 岩石学报, 27(7) : 2003-2010.

[30] 刘云飞, 侯增谦, 杨志明, 谢玉玲. 2011. 西藏弄如日金矿床流体包裹体研究. 岩石学报, 27(7): 2150-2158.